Extensions 1→N→G→Q→1 with N=C32 and Q=C5×S3

Direct product G=N×Q with N=C32 and Q=C5×S3
dρLabelID
S3×C3×C1590S3xC3xC15270,24

Semidirect products G=N:Q with N=C32 and Q=C5×S3
extensionφ:Q→Aut NdρLabelID
C321(C5×S3) = C5×C32⋊C6φ: C5×S3/C5S3 ⊆ Aut C32456C3^2:1(C5xS3)270,10
C322(C5×S3) = C5×He3⋊C2φ: C5×S3/C5S3 ⊆ Aut C32453C3^2:2(C5xS3)270,17
C323(C5×S3) = C15×C3⋊S3φ: C5×S3/C15C2 ⊆ Aut C3290C3^2:3(C5xS3)270,26
C324(C5×S3) = C5×C33⋊C2φ: C5×S3/C15C2 ⊆ Aut C32135C3^2:4(C5xS3)270,28

Non-split extensions G=N.Q with N=C32 and Q=C5×S3
extensionφ:Q→Aut NdρLabelID
C32.(C5×S3) = C5×C9⋊C6φ: C5×S3/C5S3 ⊆ Aut C32456C3^2.(C5xS3)270,11
C32.2(C5×S3) = C15×D9φ: C5×S3/C15C2 ⊆ Aut C32902C3^2.2(C5xS3)270,8
C32.3(C5×S3) = C5×C9⋊S3φ: C5×S3/C15C2 ⊆ Aut C32135C3^2.3(C5xS3)270,16

׿
×
𝔽